专业编程基础技术教程

网站首页 > 基础教程 正文

caffe 红绿灯识别

ccvgpt 2024-08-11 15:04:32 基础教程 11 ℃
  1. #coding=utf-8
  2. #加载必要的库
  3. import numpy as np
  4. import sys,os
  5. #设置当前目录
  6. caffe_root = '/home/ubuntu/caffe/'
  7. sys.path.insert(0, caffe_root + 'python')
  8. import caffe
  9. os.chdir(caffe_root)
  10. net_file='/home/ubuntu/Downloads/deep-learning-traffic-lights-master/model/deploy.prototxt'
  11. caffe_model='/home/ubuntu/Downloads/deep-learning-traffic-lights-master/model/train_squeezenet_scratch_trainval_manual_p2__iter_8000.caffemodel'
  12. mean_file=caffe_root + 'python/caffe/imagenet/ilsvrc_2012_mean.npy'
  13. net = caffe.Net(net_file,caffe_model,caffe.TEST)
  14. transformer = caffe.io.Transformer({'data': net.blobs['data'].data.shape})
  15. transformer.set_transpose('data', (2,0,1))
  16. transformer.set_mean('data', np.load(mean_file).mean(1).mean(1))
  17. transformer.set_raw_scale('data', 255)
  18. transformer.set_channel_swap('data', (2,1,0))
  19. im=caffe.io.load_image('/home/ubuntu/Downloads/deep-learning-traffic-lights-master/4.jpg')
  20. net.blobs['data'].data[...] = transformer.preprocess('data',im)
  21. out = net.forward()
  22. imagenet_labels_filename = '/home/ubuntu/Downloads/deep-learning-traffic-lights-master/synset_words.txt'
  23. labels = np.loadtxt(imagenet_labels_filename, str, delimiter='\t')
  24. top_k = net.blobs['prob'].data[0].flatten().argsort()[-1:-6:-1]
  25. for i in np.arange(top_k.size):
  26. print top_k[i], labels[top_k[i]]

[python] view plain copy

[python] view plain copy

caffe 红绿灯识别

synset_words.txt


  1. yello
  2. red
  3. green

Tags:

最近发表
标签列表